跳到主要内容

200. 岛屿数量

题目描述

给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。

岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

此外,你可以假设该网格的四条边均被水包围。

示例 1:

输入grid = [

["1","1","1","1","0"],

["1","1","0","1","0"],

["1","1","0","0","0"],

["0","0","0","0","0"]

]

输出1

示例 2:

输入grid = [

["1","1","0","0","0"],

["1","1","0","0","0"],

["0","0","1","0","0"],

["0","0","0","1","1"]

]

输出3

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 300
  • grid[i][j] 的值为 '0''1'

出处LeetCode

解法一:深度优先搜索

思路

可以使用深度优先搜索来解决这个问题。从一个为 '1' 的位置开始,将其周围的 '1' 都标记为 '0',直到没有 '1' 为止。

实现

function numIslands(grid: string[][]): number {
const dfs = (grid: string[][], r: number, c: number) => {
if (r < 0 || c < 0 || r >= grid.length || c >= grid[0].length || grid[r][c] === '0') {
return;
}
grid[r][c] = '0';
dfs(grid, r - 1, c);
dfs(grid, r + 1, c);
dfs(grid, r, c - 1);
dfs(grid, r, c + 1);
};

let count = 0;
for (let r = 0; r < grid.length; r++) {
for (let c = 0; c < grid[0].length; c++) {
if (grid[r][c] === '1') {
count++;
dfs(grid, r, c);
}
}
}
return count;
}

复杂度分析

  • 时间复杂度:O(m×n)O(m \times n),其中 mmnn 分别是二维网格的行数和列数。
  • 空间复杂度:O(m×n)O(m \times n)。在最坏情况下,整个网格均为陆地,深度优先搜索的深度达到 m×nm \times n

解法二:广度优先搜索

思路

可以使用广度优先搜索来解决这个问题。从一个为 '1' 的位置开始,将其周围的 '1' 都标记为 '0',直到没有 '1' 为止。

实现

function numIslands(grid: string[][]): number {
const bfs = (grid: string[][], r: number, c: number) => {
const queue = [[r, c]];
while (queue.length) {
const [r, c] = queue.shift()!;
if (r < 0 || c < 0 || r >= grid.length || c >= grid[0].length || grid[r][c] === '0') {
continue;
}
grid[r][c] = '0';
queue.push([r - 1, c]);
queue.push([r + 1, c]);
queue.push([r, c - 1]);
queue.push([r, c + 1]);
}
};

let count = 0;
for (let r = 0; r < grid.length; r++) {
for (let c = 0; c < grid[0].length; c++) {
if (grid[r][c] === '1') {
count++;
bfs(grid, r, c);
}
}
}
return count;
}

复杂度分析

  • 时间复杂度:O(m×n)O(m \times n),其中 mmnn 分别是二维网格的行数和列数。
  • 空间复杂度:O(m×n)O(m \times n)。在最坏情况下,整个网格均为陆地,广度优先搜索的队列的大小达到 m×nm \times n